A new version of successive approximations method for solving Sylvester matrix equations

نویسندگان

  • A. Kaabi
  • Asghar Kerayechian
  • Faezeh Toutounian
چکیده

This paper presents a new version of the successive approximationsmethod for solving Sylvester equationsAX XB = C, where A and B are symmetric negative and positive definite matrices, respectively. This method is based on the block GMRES-Sylvester method. We also discuss the convergence of the new method. Some numerical experiments for obtaining the numerical solution of Sylvester equations are given. Numerical experiments show that the solution of Sylvester equations can be obtained with high accuracy and the new algorithm is a robust technique for solving Sylvester equations. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations

In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

Global conjugate gradient method for solving large general Sylvester matrix equation

In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and  $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$  is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2007